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Abstract

We will present a new numerical algorithm that aligns a quadrilateral grid with

internal alignment curves (IACs). These IACs can be used to delineate internal in-

terfaces, discontinuities in material properties, internal boundaries, or major features

of a ow �eld. The IAC grid generation algorithm readjusts a prede�ned reference

grid to create a nearby grid where the mesh cell edges are aligned with the IACs.

On an aligned grid, numerical discretizations of partial di�erential equations can be

formulated to satisfy the interfacial relations, such as matching uxes across the dis-

continuity, to reduce the numerical errors introduced by the discontinuity. We present

examples to demonstrate the e�ectiveness of the IAC grid generation algorithm for

multiple imbedded interfaces in a quadrilateral grid.
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1 Introduction

When numerically approximating physical systems with discontinuous coeÆcients, often the

largest numerical errors are introduced in a neighborhood of the discontinuities. These errors

are often greatly reduced if the grid is aligned with the discontinuities and special formulas

are used to incorporate the jump conditions directly into the numerical model. For example,

when solving the equations governing the conservation of mass, momentum and energy in

multimaterial or multiphase ows, such as a liquid-gas or liquid-solid interfaces where the

normal and tangential stresses must be matched at the interface or the equations of state

are drastically di�erent at an interface. When modeling the strain and stress of materials

and the coeÆcients are discontinuous, then the numerical solution is often extremely sen-

sitive to the proper alignment of the control volume with the boundary. In the numerical

approximations of wave equations, discontinuities (e.g., the tensorial dielectric constants in

Maxwell's equations or the tensorial sti�ness tensors when solving general plasticity models)

can introduce spurious errors and reections at an interface boundary unless the boundary

is aligned with the discontinuity [7].

The rate and direction of underground ows predicting the extent of contamination and

environment danger posed by subsurface ows from hazardous waste sites is governed by

discontinuities in the geomorphology of the ow �eld. Finite di�erence approximations are

more accurate when the underlying grid is aligned with the discontinuities to minimize the

heterogeneity within a grid cell.

Although grid generation [11, 15] is the heart of most numerical algorithms for hetero-

geneous regions, there has been little attention to automated alignment of with the internal

boundaries. Most of the proposed methods have been to locally align a grid with interfaces

and sharp gradients in the solution [1, 3, 4, 8, 9, 10, 12, 13, 16, 18] or to explicitly treat

discontinuities as an immersed interface in a grid and locally adjust the di�erence methods

to accurately account for any discontinuities [5, 17]. The GEGA [3], directional control

[1, 4], and Jacobian-weighted [9, 10] methods can generate smooth but only qualitatively

aligned grids. The GAG [13] alignment algorithm can generate an aligned grid but it can

be extremely rough and irregular. Because the accuracy of �nite di�erence approximations

is related to the smoothness of the grid, it is essential to generate an aligned grid which is

smooth.

We will describe a new approach where after delineating the discontinuities with internal

alignment curves (IACs) and generating a boundary �tted quadrilateral reference grid, this

reference grid is rearranged so the grid cell edges are locally aligned with the IACs. The

IACs can be de�ned to delineate internal interfaces, discontinuities in material properties,

internal boundaries, or major features of a ow �eld. The new grid then captures these

discontinuities and will allow numerical discretizations of PDEs to directly incorporate the
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interfacial relations, such as matching uxes across the discontinuity, at the grid cell edges

and reduce the numerical errors introduced by the discontinuity.

The IAC algorithm is motivated by the observation that in many applications with inter-

nal discontinuities, the computation domain can be split into several homogeneous smaller

domains by the IACs. An alternative to the IAC approach would be to split the physical

domain into separate pieces, generate a separate grid for each piece and have the separate

grids communicate with each other through the interfacial boundary conditions. There are

advantages to having a single quadrilateral grid that imbeds the discontinuities as generated

by the IAC versus the exibility (but added complexity) of having several component grids,

each with it's own data structure. For the most complex problems, probably the ideal grid

would be a combination of the two approaches. In this paper, we will only consider the case

of a single quadrilateral grid with the grid aligned with the internal discontinuities.

After describing the IAC algorithm for the simplest case of aligning the grid with IACs

that span between opposite sides of the domain boundaries, we describe the more diÆcult

IAC algorithm needed to align the grid with the imbedded quadrilaterals. We then combine

the two algorithms to illustrate the robustness of the approach in a wide range of examples

with internal discontinuities.

2 Grid Alignment for Spanned IACs

When describing the algorithm, it is useful to classify the type of IACs according to whether

or not it describes an region enclosed within the domain. In this section we will describe

the algorithm for when the discontinuities can be delineated by spanned IAC (SIAC) that

connects opposite sides of the domain boundaries. These IACs are appropriate in layered

domains when approximating ows in underground ow �elds, modeling the dynamics of

layered materials, or the interface dynamics between two uids. Note that although a dis-

continuity may not stretch across the entire domain, it can be delineated by a spanned

IAC by extending the IAC from the discontinuity to the boundaries. In our algorithm, we

approximate a SIAC by a sequence of (possibly curved) line segments.

In this section we will describe the IAC algorithm for SIACs. In the example shown in

Fig. 2.1-a, there are two horizontal SIACs (H0 and H1) and one vertical SIAC (V0). These

consists of a sequence of linked line segments (e.g. H1 has line segments connecting the

points H10, H11, H12, and H13). Note that the line segments need not be a straight line; the

segment between H11 and H12 is the arc of a circle. We assume that horizontal (vertical)

SIACs do not cross other horizontal (vertical) SIACs. If a line segment is shared by both

a horizontal SIAC and a vertical SIAC, it can easily be transformed to a case where it is

not by adding more line segments. Therefore, for simplicity, we require that none of the line
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segments are shared by both horizontal and vertical SIACs.

In addition to the IACs, the algorithm requires an initial (not necessarily aligned) bound-

ary �tted grid as in Fig. 2.1-b. The initial grid can be generated by any standard grid

generation algorithm based on, say, trans�nite interpolation [15], an elliptic grid generator

[11] or the divide and conquer [2] algorithm.

The alignment process begins with the simple assignment of a single horizontal grid line

to each of the horizontal SIACs and a vertical grid line to each of the vertical SIACs.

To select the appropriate grid line to align with the SIAC, we will describe the process

for a horizontal SIAC. First, for each vertex of the SIAC, �nd the point of the non-aligned

grid which is closest to the vertex. Next take the average of the vertical indices of all of the

closest non-aligned points and round to de�ne vertical index of the closest horizontal grid

line to the SIAC. After doing this for each vertical and horizontal SIAC, the intersection

points between two SIACs have unique grid indices (logical coordinates) in each direction.

The location of the grid points between any two SIAC vertices are then uniformly distributed

(default) or distributed by the virtual function de�ned by the user. The original distribution

of the grid points can be preserved by computing the intersections between the SIAC and

grid lines and then redistributing them with inverse interpolation [6]. On a curvilinear grid

this should be done in physical space instead of grid index (logical). If a SIAC crosses a

sparse region and a dense region, an alternative way to preserve the distribution is to split

the SIAC into two SIACs, one in sparse region, one in dense region.

The assignment of the reference grid line to the SIAC may result in grid points crossing

on the domain boundaries and these points must be regularized while retaining their relative

positions. Linear interpolation is usually suÆciently accurately de�ne new grid locations

along smooth boundaries but it can introduce large errors near kink points or internal cor-

ners. A kink is a speci�ed point on an IAC or boundary where the slope of the curve is

discontinuous (e.g., point H11 in Fig. 2.1-a). We handle the kinks in the boundary by not

restricting the grid point movement during the redistribution and then moving the boundary

points nearest to the kinks to the kinks location. This approach is also used in the divide

and conquer grid generation method [2].

We regularized the boundary grid points by �rst using the original distribution of the

original grid points on the boundary as a guide for the density of mesh points along a

boundary line. We use inverse interpolation between the intersection points of the SIACs

with the boundaries to rede�ne the grid points on the boundary so that they match the

relative distribution of the original reference grid. The inverse interpolation is done in grid

index space by assuming the grid spacing between the original grid points is uniform. The

distribution and location of the new grid points is de�ned by calculating the length of each

boundary segments and dividing it by the new number of intervals.
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Figure 2.1-a: The goal is to align a grid
with the two horizontal and one vertical
SIACs in this square domain.
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Figure 2.1-b: The initial reference grid for
the domain in Fig. 2.1-a is a uniform 41� 41
point grid.
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Figure 2.1-c: Moving the reference grid
points closest to the SIACs to lie on the SIAC
generates a possibly overlapping grid.
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Figure 2.1-d: After smoothing the loca-
tion of the grid points and redistributing
the points along the SIACs and the domain
boundary, the aligned grid accurately tracks
the IACs.

2.1 Grid Smoothing Algorithm

Rede�ning the grid points on the SIACs and domain boundaries can result in severe distor-

tions or tangling of the internal grid points (e.g., see Fig. 2.1-c). we regularize the positions

of the grid points not on the SIACs or a domain boundary. That is, the mesh points on

all SIAC and domain boundaries are frozen and the positions of the remaining points are

smoothed by an iterative elliptic smoothing grid generation method. In the examples pre-

sented here, we use Gauss-Seidel iterations to solve the Thompson, Thames and Mastin

(TTM) smoothing equations [14]. The smoothing regularizes the distribution of the grid

points, and eliminates the overlapping (see Fig.2.1-d).

Once a smooth grid has been generated by freezing some of the grid points, the points

on the domain boundaries are freed up and the smoothing grid generator is called again.

We use the inverse interpolation algorithm to set the relative spacing of the points on the
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boundary to be the same as the relative spacing of the grid points along the �rst internal

line of grid points. We found this two step process to be more robust than allowing the IAC

points to move on the domain boundary in the initial smoothing step. This is especially true

when the grid must be aligned with multiple IACs. For most problems, the boundary points

need to be smoothed only a few times.

3 Grid Alignment for Quadrilateral IACs

We �rst consider the case when the internal discontinuities can be delineated by the boundary

of a collection of quadrilateral IACs (QIACs). In our implementation, the grid is aligned

sequentially with the perimeters of the QIACs and we assume that the alignment with one

quadrilateral does not a�ect the alignment with the others. Therefore, although the QIACs

can be adjacent to each other or nested within one another, they should not overlap.

To align a grid with internal quadrilaterals it is possible transform the problem into align-

ment with SIACs by extending the edges of the quadrilaterals as horizontal and vertical line

segments to the domain boundaries. This approach succeeds for one or two quadrilaterals,

but will usually produce a grid that is not as well structured as the one produced with an

algorithm designed speci�cally for quadrilaterals. This is especially true when there are large

numbers of quadrilaterals or the boundaries of the quadrilaterals and the relations between

them, such as several quadrilaterals nested within each other, are extremely complicated.

For these situations, it is extremely diÆcult to automate a procedure that will embed the

QIACs into a SIAC problem.

3.1 Single QIAC

Consider the initial reference grid and the embedded quadrilateral shown in Fig. 3.2-a. We

will use this example to illustrate the basic single QIAC algorithm:

1. Identify the closest reference grid point for each vertex and assign logical (index) co-

ordinates for the vertices and the center of QIAC:

� Identify the grid point closest to each vertex of the quadrilateral and assign its

logical coordinates to the vertex. In Fig. 3.2-a if the grid lines are numbered from

0 to 10, then the grid index closest to the vertex V0 at (0:2; 0:6) is (2; 6), V1 is at

(5; 2), V2 is at (8; 4), and V3 is at (5; 8). Here we have ordered the four vertices in

counterclockwise in the logical (index) coordinate system.

� To determine a starting vertex of QIAC for the algorithm in a consistent manner,

we use an algorithm that identi�es it as the lower left corner of the logical reference
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grid. The horizontal logical coordinate of this vertex must be smaller than the next

vertex, and average of the absolute values of the logical slopes of the candidate

starting edge and the corresponding opposite side of the QIAC must be less than

that of the other two edges of the QIAC. For this example, only V0 and V1 satisfy

the �rst condition. For the sum of absolute value of the logical slopes between

V0�V1 and V2�V3, is ((6�2)=(5�2)+(8�4)=(8�5) = 8=3). The sum between

V1 � V2 and V0 � V3 is ((4 � 2)=(8 � 5) + (8� 6)=(5� 2) = 4=3). Therefore, we

de�ne V1 to be the lower left corner in logical coordinates.

� De�ne reference points in the logical coordinate system.

{ De�ne the logical center of the quadrilateral as the average (truncated to an

integer) of the logical coordinates of the four vertices. For this example the

logical center is at Vc = (V1 + V2 + V3 + V0)=4 = (5; 5).

{ De�ne average logical length in the x and y directions of the logical coordinate

system as lx = (V2 � V1 + V3 � V0)jx=2 + 1 = (8� 5 + 5� 2)=2 + 1 = 4 and

ly = (V3 � V2 + V0 � V1)jy=2 + 1 = (6� 2 + 8� 4)=2 + 1 = 5.

{ De�ne the logical coordinates for the four vertices based on the logical co-

ordinates of the center and average length in each direction. The logical

coordinates for the lower left corner V1 is V1 = (Vc � (lx; ly)=2) = (3; 3). The

logical coordinates for other three vertices are V2=(7,3), V3=(7; 7), V0=(3; 7).

2. Split the domain into nine parts by connecting the four vertices with the domain

boundaries by moving the closest reference point to each vertex as shown in Fig. 3.2-b.

For this example, the closest reference point of each vertex and vertex itself are at the

same location. For general grid, this may not be true and some parts may degenerate

into a single grid line if one side of the QIAC is on the domain boundary.

3. Using inverse interpolation, compute the grid locations for the line segments on the

quadrilateral, along the lines connecting these segments to the domain boundaries and

on the domain boundaries as shown in Fig. 3.2-c.

� First de�ne the grid points on the lines connecting the vertices with the domain

boundaries. Note that to preserve the order of the grid points on a boundary, the

locations of the boundary points and the points nearest to the boundaries are not

changed by the inverse interpolation.

� Using the inverse interpolation, de�ne the grid positions on the domain boundary.

� De�ne the grid points between the vertices on the QIAC.
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4. If the domain boundary has a kink point, move the reference grid point closest to the

kink point to the kink point, as we did for aligning the grid with an SIAC. (Note, that

there are no kink points in the example shown in Fig. 3.2-a). Because we modify the

grid point locations only on the four lines, where the edges of quadrilateral lie, and

the domain boundaries, the grid we generate after this step is very irregular (see Fig.

3.2-d).

5. Using the same smoothing operator as for the SIAC, generate the aligned grid while

freezing the grid points on the QIAC and domain boundary. Then the points on the

domain boundaries are freed up and the smoothing grid generator is called again (see

Fig. 3.2-e).

To insure that initially the di�erent vertices have di�erent logical coordinates, the ref-

erence grid should be suÆciently �ne so the local minimum spacing for the reference grid

should be larger than the distance between any two vertices of the QIACs. Otherwise, two

vertices may have the same nearest reference point, which could lead to the singularity of

the quadrilateral. When this happens for a thin layer where two vertices are close, it can be

avoided by using a �ner reference grid near the thin layer. To prevent multiple QIAC vertices

being assigned to the same reference grid point, we de�ne the reference vertices sequentially.

That is, we bind the vertex that is closest to a reference point to that point and eliminating

it for consideration as a reference point for any other vertices. This approach is robust, and

can create a locally �ne grid near the quadrilateral.

3.2 Multiple QIACs

When there are several quadrilaterals inside the domain, we recursively align the grid with

the quadrilaterals one at a time using the single QIAC algorithm. Before beginning the

alignment process, we analyze the QIACs to identify potential problems, such as overlapping

QIACs or QIACs with shared boundaries. We minimized these problems by de�ning new

QIACs to be used during the alignment algorithm.

When a QIAC shares a boundary with its parent QIAC, we say the child shared boundary

is contained in the boundary of the parent QIAC. When two QIACs are not nested but share

only part of a boundary, it is convenient to generate a new QIAC and to de�ne three QIACs

where the shared boundary is now contained in the boundary of another quadrilateral. An

example is shown in Fig. 3.3-a. If two QIACs intersect at a vertex, then we add another

quadrilateral which shares a boundary with both quadrilaterals (see Fig. 3.3-b). At this

time, our algorithm does not support more than three quadrilaterals intersecting at a single

point.
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Figure 3.2-a: The initial QIAC is embedded in a uniform
11� 11 initial grid.
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Figure 3.2-b: The domain is split into nine
subdomains by extending the vertices to the
domain boundaries.
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Figure 3.2-c: The reference grid points
are de�ned for the line segments on the
QIAC, the lines connecting the vertices to
the domain boundaries and along the domain
boundaries.
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Figure 3.2-d: The initial grid points near-
est the IACs are moved to the newly de�ned
reference grid points.
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Figure 3.2-e: The grid is regularized by
the two-step smoothing algorithm described
in Section 2.1.
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Figure 3.3-a: Two QIACs that initially

share part of the boundary are transformed

into three QIACs where the shared boundary

is now contained in the boundary of another

quadrilateral

Figure 3.3-b: Two QIACs that share a ver-
tex are transformed into three QIACs where

the shared boundary is now contained in the

boundary of another quadrilateral

We order the alignment process by de�ning a tree structure (as shown in Fig. 3.3-c) to

catalog then nesting of the QIACs with respect to each other. A QIAC with another QIACs

inside is de�ned as the parent and the included QIACs are its children and are linked below

the parent in the alignment tree. Two QIACs are siblings if they have the same immediate

parent but do not contain each other. We de�ne the whole domain as the �rst parent at the

top of the alignment tree. The recursive alignment algorithm begins at the top of the tree

and works it way down. After the grid has been aligned with a QIAC, then the alignment

algorithm aligns the grid for its children. After the grid has been aligned with all the children

of a QIAC, then is aligned with the siblings of the QIAC.

The order in which the grid is aligned with the QIACs on the same level does a�ect the

�nal aligned grid. In practice the resulting grid is insensitive to the order that the grid is

aligned with the siblings on the same level. We do �nd that the algorithm is usually more

e�ective and requires fewer smoothing iterations if the grid is aligned with the sibling that

has the most share parts with other QIACs �rst.

A

B

C D E

F

G

A

B C

D E

F

G

Figure 3.3-c: The multiple QIACs in the �gure on the right are analyzed by the tree diagram on the left

and the grid the QIACs are considered in the order A-B-C-D-E-F-G.

Once the alignment tree has been de�ned and the next QIAC to be aligned has been
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selected, the �rst step is to �nd the largest isolated subdomain of a previously aligned region

that contains the selected QIAC (see Fig. 3.3-d). The boundary of the subdomain could be

the boundary of the whole domain, the boundary of the previous aligned quadrilaterals, or

previously aligned horizontal or vertical SIACs.

To minimize the e�ect of de�ning the grid in the subdomain, the subdomain is de�ned

to be as large as possible, but not to contain any previously aligned QIACs. To identify the

largest isolated subdomain, we start with the whole domain, and shrink it step by step.

1. First we check if the quadrilateral is inside another previously aligned quadrilateral.

If so, then because we are re�ning from top to bottom of the parent-child alignment

tree, if a quadrilateral is nested inside another one, the larger one will have already

been aligned. If this is the case then we shrink the subdomain to be the boundaries of

the parent aligned quadrilateral.

2. Next if the current quadrilateral is not the child of a previously aligned QIAC, then

we check if it is between any SIACs. If so, then shrink the subdomain by using these

IACs to de�ne the new boundaries of the subdomain.

3. Finally, we check if there are previously aligned QIACs inside the current subdomain.

If so, then the subdomain is shrunk again until there is no other aligned QIACs in

the subdomain. The rectangular subdomain is shrunk until it is the largest isolated

rectangular region containing the selected QIAC that does not intersect or contain a

previously aligned QIAC. This can be done by sweeping each boundary of the subdo-

main to exclude the previously aligned QIACs (see Fig. 3.3-d). Note that the boundary

of the largest isolated subdomain usually overlaps with the boundaries of previously

aligned QIACs.

It may seem that the ideal subdomain for the selected QIAC would be one whose bound-

aries contain the boundaries of the selected QIAC. However because the subdomain boundary

does not change during our alignment and smoothing, unless the selected QIAC is on the

external boundary of the domain or on a previously aligned IAC, this is usually a poor choice

for the alignment.

The grid is aligned for the selected QIAC by applying the single QIAC alignment algo-

rithm within the selected subdomain. Although for the single QIAC alignment algorithm,

the distribution of points on boundary of the whole domain is unrestricted, the boundary of

the selected subdomain may contain other previously aligned QIACs. If so, the logical indices

for the vertices of previously aligned QIACs should not be changed, although the points can

move along the subdomain boundary during the subdomain alignment. We allow this move-

ment by identifying the vertices of the previous aligned IACs on the subdomain boundary

and redistribute the points based on this information of these IACs and the selected QIAC.
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Figure 3.3-d: If the grid has already been aligned with the QIACs A, B, C and D, then to identify the

largest isolated subdomain for the QIAC E that is as large as possible but does not contain other previously

aligned QIACs. First since QIAC A is a parent of D, we take it as the initial subdomain for E in Fig. (a).

Because this still contains the previously aligned QIAC B, this subdomain is shrunk to the one shown in

Fig. (b). The subdomain is further reduced in Figs. (c) and (d) to exclude the previously aligned QIACs C

and D.

When the boundary of the selected subdomain is a SIAC, then we have more freedom in

de�ning the number of grid points along the IAC. If the boundary of the subdomain contains

vertices of an SIAC, these points are treated as kink points.

Finally, when the vertex for the selected QIAC is also a vertex of a previously aligned

QIAC, then the logical indices for this vertex have been assigned and cannot be changed.

The algorithmic ow of the alignment algorithm for multiple QIACs:

1. Preprocess the QIACs to eliminate overlapping QIACs and shared boundaries.

2. De�ne the parent-child alignment tree to catalog how the QIACs are nested within

each other
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3. De�ne an order for the alignment process by sweeping the alignment tree from top to

bottom and ordering the 'most diÆcult' siblings �rst.

4. Recursively align the grids with the QIACs using the single QIAC algorithm applied

to the QIAC subdomain.

a. De�ne the selected QIAC as the next one in the order queue.

b. De�ne the subdomain that contains only the current QIAC.

c. Align the grid with the selected QIAC within the subdomain.

d. Smooth the grid for the selected QIAC within the subdomain.

e. If there are other QIACs to align, go to step a.

5. Smooth the entire grid again.

When the boundary of a QIAC is not straight lines, the position of the grid points on

that boundary should be computed according to the shape of the edge.

When the grid is to be aligned with both SIACs and QIACs, we could �rst transform the

line segments into the boundaries of QIACs and then use the multiple QIAC algorithm to

align the grid. However, because the SIAC alignment algorithm is usually simpler, more eÆ-

cient and can produce a better structured grid than the QIAC algorithm, it is advantageous

to keep the SIACs and directly combine the two algorithms. We do this by �rst aligning

the grid with the SIACs. Next, if there are QIACs that cross SIACs these quadrilaterals are

split so they do not cross an SIAC. We then apply the QIAC algorithm while freezing the

mesh points on the SIACs.

If the IACs are not quadrilaterals, they can usually be subdivided into quadrilaterals.

We represent triangles as quadrilaterals by de�ning the center of the longest edge of the

triangle to be a degenerate (180o) vertex of a quadrilateral with the same perimeter. The

user can represent the IAC regions with more than four edges by dividing the region into

quadrilaterals and triangles. Because those splitting introduce additional internal boundaries

which are not IACs, the mesh points are not required to stay on these arti�cially created

internal boundaries during the smoothing iterations. This is accomplished by setting a ag

for each vertex on the internal boundaries to indicates if the point is on an IAC or not.

4 IAC Grid Alignment Examples

To demonstrate the strengths and weaknesses of the IAC grid alignment algorithm, we con-

sider examples demonstrating the e�ectiveness of the algorithm for a problem with multiply

imbedded regions, including circles and nested quadrilaterals. Next we illustrate how by
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ordering and subdividing of QIACs can result in very di�erent aligned grids. The examples

all are initialized with a 41� 41 uniform grid, unless it is explicitly stated otherwise.

The computer software for these examples was developed by Shengtai Li and Patrick

Knupp and is available through the web site \http://engineering.ucsb.edu/~shengtai". There

is also a graphics interface to display the grid during the re�nement process and allow for

interactive steering of the alignment process. The original IAC alignment code was written

in Fortran, but lacked the exibility to accommodate multiple shaped internal boundaries,

without extensive changes for each special case. The current C++ software is fare more ex-

ible than the Fortran software in accommodating di�erent shaped boundaries. The virtual

function in the C++ allows di�erent shape of the boundaries to be computed with the same

routine as long as the boundaries are access through pointer or reference.

4.1 Multiple imbedded SIAC and QIAC Examples

In the �rst example we illustrate the exibility of the IAC algorithm by including imbedded

QIACs, QIACs with a shared edge and an ellipse section. Note that the large QIAC-I shown

in Fig. 4.5-a contains two smaller ones (II and III) and that QIAC IV shares an edge with

the large QIAC. Also, QIAC V is a circle that has been delineated by four circular arcs

connecting the vertices. The numbering of the QIACs is also the order in which the IAC

algorithm aligned the grid.

In all of the examples, the internal quadrilateral are de�ned by four vertices ordered in an

anti-clockwise. This same order is used to ag if the mesh points on the internal boundaries

are IACs or were arti�cially created by the algorithm when dividing the region into SIACs

and QIACs.

The aligned grid in Fig. 4.5-b illustrates the e�ectiveness of the algorithm on this complex

example. Note that the initial uniform reference grid points along the boundary are now

nonuniform to better accommodate the IACs. These mesh points were allowed to slide along

the boundaries when the grid was aligned with the internal QIAC. That is, the boundaries of

outside QIAC de�ne a small domain for the inside QIAC. This holds also when we align the

grid with object IV. The inverse interpolation preserves the shape of the previous QIACs,

although the points on the QIAC boundary are redistributed. We also observed that during

the alignment algorithm, when the grid was aligned with QIAC V and VI, the number of

points on the boundary of QIAC I did not change. Although the default line property is a

straight line, the boundaries of the objects and line segments can be de�ned by the user to

be any shape. This is done to de�ne the ellipse as QIAC V.

In geophysical applications, it is common to have very thin layers that must be aligned

with the grid. Among the mixed SIACs and QIACs in Fig. 4.5-c is a very thin QIAC layer.

This layer is below the thickness of our original reference grid, but the algorithm resolves the
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potential conict in assigning a single reference grid point to multiple QIAC vertex points.

The IAC grid shown in Fig. 4.5-d. also illustrates how the circular arc in the SIAC results

in a kink point being created where the straight line segments and circular arc meet. The

kink point can be used by the user to indicate special points where a mesh point must be

placed. A list of the kink points de�ning their position must be supplied by the user before

the initial grid generation. This was done to de�ne the kink in the upper horizontal SIAC.
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Figure 4.5-a: Six QIACs, including a cir-
cle, two QIACs with a shared boundary and
two nested QIACS, are de�ned in a square
domain.
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Figure 4.5-b: The IAC alliged grid for the
QIACs shown in Fig. 4.5-a.
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Figure 4.5-c: Three SIACs and two QIACs
identify the interfaces to align the grid. The
thin QIAC is approximately half the original
grid spacing.
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Figure 4.5-d: The IAC aligned grid for Fig.
4.5-a accurately tracks the interfaces and re-
solves the very thin QIAC.

4.2 Sensitivity of the grid to the IAC procedure

To investigate the sensitivity of the �nal aligned grid to the way in which the region is

subdivided, we consider the QIAC shown in Fig. 4.6-a. If we follow the procedures described

in Sec. 3.1, the resulting grid is almost a square grid imbedded in the slanted rectangle shown
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in Fig. 4.6-b. Note that the density of grid points inside the QIAC is less than elsewhere in

the domain.

We next divided the QIAC into two triangles and one slanted rectangle, as shown in Fig.

4.6-c. We described the triangles as degenerate QIACs with a vertex in the middle of the

long edge. We set the ag not to freeze the grid points along these long edges in the �nal

grid smoothing step. That is, the grid points will stay aligned with the original QIAC, but

not the internal ones. However, because the intermediate steps require more grid points to

align the grid with the triangle, more grid points are 'trapped' inside the original QIAC.

This results in far more internal grid points in the �nal aligned grid, Fig. 4.6-d.
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Figure 4.6-a: A diagonal QIAC is imbed-
ded in a square domain.
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Figure 4.6-b: The IAC aligned grid inside
the QIAC for Fig. 4.6-a is coarser than else-
where in the grid.
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Figure 4.6-c: The original QIAC in Fig.
4.6-a is split into two triangular QIACs and
on diagonal QIAC in an attempt to confuse
the IAC algorithm.
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Figure 4.6-d: The internal boundaries for
the new QIACs in Fig. 4.6-c are not treated
as IACs in the smoothing iteration. Note that
the resulting mesh is much �ner in the QIAC
than in Fig. 4.6-b.
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4.3 IACs in nonrectangular domains

Consider the three rectangular QIACs inside a shell domain shown in Fig. 4.7-a. As described

in Sec. 3, the current implementation of our algorithm requires that the left or the right

QIAC must be aligned �rst. Note that the sequential nature of the algorithm broke the

symmetry of the grid shown in Fig. 4.7-b. Because we align the grid with the left QIAC

before the right one, the grid is more regular on the left side of the domain. Other ordering of

the QIACs will alter the symmetry. If a symmetric grid is desired for a symmetric problem,

then the symmetry should be removed from the IAC process by solving, in this case, for

half the domain and then reecting the grid about the symmetry line to generate the full

symmetric aligned grid.

Figures 4.7-c and 4.7-d illustrate the IAC grid for two line segments (a SIAC) and a

square QIAC inside a quarter disk domain. As in the �rst example, the kink point in the

SIAC must be explicitly accounted for when aligning the QIAC.

The \C"grid in Figures 4.7-e and 4.7-f is de�ned to have a kink point at the tip of the

triangle on the domain boundary. This example also provided a good test for the e�ectiveness

of the inverse interpolation routine to freeze the �xed point at the kink point in the middle

of the boundary.

5 Discussion

We have described a new numerical algorithm that aligns an initial noaligned quadrilateral

grid with internal curves delineating internal interfaces in a computational domain. We

demonstrated the robustness and versatility of the IAC grid alignment for internal boundaries

in a series of numerical examples. The IAC algorithm can be generalized to three dimensions

with moderate e�ort. Just as the problem of generating a two-dimension grid was reduced

to that of generating a single grid curve in the plane, so the problem of generating a three-

dimensional grid reduced to the problem of generating a surface in space.
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